Педагогические науки

УДК 37

И.Д. КУНЕВИЧ (Волгоград)

СОВРЕМЕННЫЕ ПОДХОДЫ К ФОРМИРОВАНИЮ ИССЛЕДОВАТЕЛЬСКОГО ОПЫТА ШКОЛЬНИКОВ

Анализируются различные подходы к формированию исследовательского опыта у школьников, включая конструктивистский подход, метод проектирования, проблемное обучение, STEM-технологии и сетевое взаимодействие. Рассматривается их влияние на подготовку учащихся к исследовательской деятельности, а также на развитие аналитического и критического мышления.

Ключевые слова: исследовательский опыт, конструктивистский подход, проектная деятельность, проблемное обучение, сетевое взаимодействие.

MODERN APPROACHES TO DEVELOPMENT OF RESEARCH EXPERIENCE OF SCHOOLCHILDREN

The different approaches to the development of research experience of schoolchildren, including the constructivist approach, project-based method, problem-based learning, STEM-technologies and networking cooperation are analysed. Their influence on the students' training to the research activity and the development of analytical and critical thinking is considered.

Key words: research experience, constructivist approach, project activity, problem-based learning, networking cooperation.

Одной из приоритетных задач в условиях окружающей действительности является формирование исследовательского опыта среди школьников. Поиск, формулирование проблем, анализ новой информации и применение полученных знаний на практике, вот некоторые компетенции, которые должны закладываться в учениках, помимо усвоения готовых знаний. Исследовательская деятельность становится важным инструментом подготовки учащихся к будущей профессиональной деятельности в результате изменений в образовательных стандартах и требований рынка труда.

Необходимые для успешной социализации и профессиональной адаптации, исследовательский опыт способствует формированию важных качеств, таких как аналитическое мышление, креативность, решение проблем и т. п. Понимание учебного материала, а также повышение мотивации к обучению через использование исследовательской деятельности подтверждается рядом исследований, освещающих данный феномен.

В России, как и во многих других странах, осознавая необходимость развития исследовательского опыта, к сожалению, по-прежнему придерживаются традиционных методик обучения, базирующихся на репитативности и запоминании информации. Таким образом, между практикой в образовательных учреждениях и требованиями времени возникает разрыв идей. Отсутствие системного подхода к внедрению исследовательских методов в учебный процесс ведет к недостаточной подготовленности школьников к самостоятельной научной деятельности и исследовательской работе в высших учебных заведениях.

Говоря о подходах формирования исследовательского опыта школьников, нельзя обойти стороной современные **определения исследовательского опыта**. Так в своей диссертации Н.И. Голавская

определяет субъектный исследовательский опыт ученика как «сложное, интегративное, психологическое образование личности учащегося, структурными компонентами которого являются мотивационный, когнитивный, деятельностный» [5, с. 10].

О.С. Кононенко в своей работе определяет опыт исследовательской деятельности старшеклассников как «характеристику личности, включающую в в себя: приобретенные в процессе исследовательской деятельности знания в определенной области науки; способы деятельности (способы познания действительности); умения, необходимые для организации исследовательской деятельности; собственно-исследовательские умения; сформированные эмоционально-ценностное отношение школьников» [10, с. 11].

Меняющиеся подходы к обучению и пониманию роли учащихся в образовательном процессе является отражением многоэтапного развития исследовательского опыта у школьников. Эти подходы можно проследить от классического педагогического наследия до современных инновационных методик.

Передача знаний от учителя к ученику представлялось основной формой деятельности в течении XIX в. В этом контексте исследовательские навыки рассматривались как побочный продукт обучения, а не как самостоятельная цель.

Дж. Дьюи, выделявший важность активного обучения и практического опыта, является примером мыслителей, давших в XX в. начало развития прогрессивных подходов. Интересы учащихся и их активное участие в учебном процессе выступает главным звеном в его книге «Демократия и образование». В дальнейшем это стало основой для развития исследовательского опыта, т. к. учащиеся начали сознавать, что обучение связано с реальной жизнью и проблемами, которые требуют активного поиска решений [7].

В развитие понимания когнитивного развития совершил значительный вклад Ж. Пиаже. Он утверждает, что дети, решая проблемы и участвуя в активном взаимодействии с окружающим миром осваивают новые знание. Главная мысль теории стадий развития интеллекта подчеркивает важность практического опыта процессе обучения, что создает основы для формирования исследовательских умений [15].

На важности социального взаимодействия в процессе обучения, делает акцент в своих трудах Л.С. Выготский. Учащиеся способны достигать более высоких уровней понимания и навыков через сотрудничество с более опытными учениками, что соответствует ключевому понятию «зона ближайшего развития» в теории социокультурного развития [3].

Интеграция инновационных концепций и методов, ориентированных на активное участие учащихся в процессе образования и формирование обстоятельств, мотивирующих самостоятельных поиск решений характеризуют современные подходы по формированию исследовательского опыта. Рассмотрим основные из них.

Конструктивистский подход: Не просто воспринимая готовые знания, учащиеся выступают главной фигурой в обучении, активно создающим свое собственное понимание мира.

Пассивная роль простого запоминания информации отодвигается на второй план, вместо этого уделяется внимание парадигме обучения, основанного на непрерывном процессе самостоятельного организации и конструирования знаний.

Самостоятельный опыт является главным фактором усвоения знаний, по мнению конструктивизма. Обучение через решение задач, имеющих привязку к реальным ситуациям, стимулирует самостоятельность и адаптивность учеников. Исследования показывают, что конструктивизм способствует не только академическому обучению, но и развитию творческого мышления, что особенно актуально при работе с одаренными учащимися. Привлечение учащихся к активной деятельности позволяет им развивать свои уникальные способности и потенциал [1].

Учитель теряет статус источника готовых знаний и выступает в данном подходе уже с точки зрения наставника и фасилитатора, помогающего своим ученикам. Не давая готовых советов, педагог конструирует кейсы для формирования опыта и знаний. Кроме того, данный подход строится на создании

системы коллективного взаимодействия в классе, а также на дифференции обучения в зависимости от степени подготовленности среди учащихся [2].

Проектная деятельность в образовании занимает важное место как инструмент, способствующий активному обучению, личностно-ориентированному подходу и развитию ключевых компетенций у учащихся. Развитие коммуникации, распределение роли, определение проблем, задач и методов исследования, являются следствием осуществления группового проекта.

В условиях развития индивидуального подхода и усиленного внедрения цифровых технологий как в общеобразовательные, так и профессиональные учреждения, значимость проектной деятельности подтверждается современными исследованиями [6].

Способствуя развитию аналитических навыков, проектная деятельность даёт школьникам возможность осуществлять интересующие их исследования. Формируют учащиеся исследовательский опыт как правило через формулирование гипотезы, сбор данных, проведение наблюдения и эксперимента и анализ результатов. В проектах активизируется критическое мышление, т. к. ученики зачастую сталкиваются с реальными проблемами. Они должны оценивать информацию, выявлять её значимость и формулировать собственные выводы, что развивает креативные способности и умение работать с информацией [Там же].

Повышенный уровень мотивированности в учебе демонстрируется при введение проектной деятельности в образовательную программу. Например, проекты могут включать элементы, связанные с местным сообществом, где школьники исследуют социальные проблемы и предлагают решения, тем самым развивая не только свои исследовательские навыки, но и гражданскую ответственность. Решая поставленные задачи, в процессе реализации проекта, должны применять такие инновационные методы, как групповые дискуссии, case study, деловая игра, эвристическая беседа и др. [4].

Проблемное обучение — это педагогический подход, стимулирующий познавательную активность и развитие критического мышления у учащихся посредством использования проблемных ситуаций. Более глубокому усвоению материала и развитию навыков самостоятельного анализа способствует тот принцип, что учащиеся самостоятельно ищут решения проблем [14].

Давая возможность учителям развивать свои компетенции и активно вовлекать учеников в образовательный процесс, этот подход является эффективным инструментом. Этот процесс активного взаимодействия между преподавателем и учениками создает условия для глубокого понимания предмета и развития исследовательских умений, что, в свою очередь, стимулирует интерес к обучению и формирует исследовательские навыки.

В условиях новых ФГОС данный подход становится особенно актуальным, т. к. он позволяет интегрировать различные предметные области и достигать метапредметных результатов. Это важно для развития исследовательского мышления у школьников, т. к. учащиеся учатся использовать язык не только для общения, но и для анализа информации и решения практических задач [12].

Возможность адаптировать методы обучения под современные актуальные требования и стандарты объясняется долгосрочными традициями проблемного подхода, имеющими успех в практике педагогов. Учащиеся, погружаясь в исследовательскую деятельность, учатся ставить собственные вопросы и находить на них ответы, что значительно увеличивает их уверенность и интерес к обучению.

STEM-технологии, представляют собой междисциплинарный подход к обучению, составляющий из себя сплав естественных наук, технологий, инженерного дела, и математики (в некоторых исследованиях STEAM с добавлением Art-искусства), который ориентирован на формирование исследовательского опыта и решение задач из реальной практики.

В основе STEM-образования лежит стремление интегрировать знания из различных предметных областей, направляя их на решение реальных проблем, что позволяет школьникам видеть конкретное применение получаемых знаний. Развитие способности проводить исследования и оценивать результаты происходит благодаря тому, что STEM акцентирует внимание учащихся на важности критического и аналитического мышления [13].

Особое значение в STEM-технологиях занимает проектная деятельность, в рамках которой школьники участвуют в решении реальных задач, разрабатывая собственные проекты или модели. Такой подход, как показывают исследования, позволяет не только усваивать теоретические знания, но и применять их на практике, что является важным аспектом формирования инженерного мышления. Ученики приобретают опыт работы с данными, анализируют и интерпретируют результаты, учатся выдвигать гипотезы и проверять их на практике. Это способствует освоению научного метода и формирует навыки исследовательской работы, что делает учащихся более подготовленными к вызовам, с которыми они могут столкнуться в будущем [17].

Подход в особенности полезен для формирования устойчивого интереса к техническим и естественным наукам, в особенности его преимущества проявляются во внеурочной деятельности, в ходе которых применяются методы моделирования, поиска, эксперимента.

STEM также способствует развитию командных навыков, поскольку проекты часто требуют совместной работы. Работая в команде, школьники учатся коммуницировать, делиться знаниями, обмениваться идеями и искать совместные решения — всё это играет важную роль в их будущей исследовательской деятельности.

Сетевое взаимодействие в образовательной среде представляет собой систему взаимосвязей и взаимодействий между различными образовательными учреждениями, педагогами, учащимися и родителями, основанную на использовании современных информационно-коммуникационных технологий. Эта форма взаимодействия играет ключевую роль в организации образовательного процесса, способствуя более глубокой интеграции знаний и развитию исследовательских навыков у школьников [16].

Одной из основных особенностей сетевого взаимодействия является возможность создания условий для совместной работы и обмена информацией между учащимися из разных школ и регионов. Это позволяет не только расширять кругозор учеников, но и обеспечивать доступ к более разнообразным образовательным ресурсам. Исследователи подчеркивают, что сетевое взаимодействие способствует формированию исследовательских компетенций, т. к. учащиеся получают возможность работать над проектами совместно с другими, анализируя и обобщая информацию, что является важным аспектом исследовательской деятельности [8].

Методы сетевого взаимодействия включают использование платформ для совместной работы, такие как облачные сервисы, виртуальные классы и специализированные образовательные сайты, которые позволяют проводить исследовательские проекты в режиме реального времени.

Одной из форм сетевого взаимодействия выступает СОП – сетевые образовательные проекты. Как показывают исследования, данная форма позволяет эффективно проявлять и развивать исследовательские навыки в условиях взаимодействия не только среди учеников и учителей, но и в том числе при содействии ВУЗов, которые способны обеспечить как передачу исследовательского опыта научного сообщества, так предоставить познавательные ресурсы, в которых школа может быть ограничена [18].

Рассмотрим структуру одного из сетевых классов «Индивидуальные проекты. Физика». Преимуществом этого сетевого класса является его структурность и последовательность. Весь курс разделен на разделы и этапы. В большинстве случаев, этапы разделов сопровождают как текстовое, так и видеосопровождение. На начальных этапах старшекласснику в качестве примера предлагается изучить ход исследовательского проекта одного из учеников. В дальнейшем, задачей ученика становится самостоятельное формулирование своего исследования.

Очень важно здесь отметить ту особенность, что параллельно с реальным примером проекта, в курсе приводится адаптирования теоретическая и методологическая база, необходимая для достоверной научной работы. Таким образом, данный сетевой класс решает проблему слепого копирования чужого опыта, и даёт возможность ученику, с научной опорой самостоятельно определять объект, предмет, задачи, методы и т. п.

Сетевое взаимодействие организовано в данном примере на уровне в том числе коммуникаций. В любой момент ученик может найти в разделе «обсуждения» нужный ему этап курса, где будет представлен форум и обучающийся сможет как поделиться своим опытом, так и задать свои вопросы. Помимо обсуждения регулярно на этапах прохождения курса проходит тестирование, посвящённое как правило пройденному материалу. Здесь тоже вскрывается сетевое взаимодействие, позволяющее составителям курса проводить мониторинг сложности курса и усвоения его материала [9].

Сетевое взаимодействие, в том числе, позволяет создавать единый верифицированный образовательный контент, который является содержанием сетевых проектов, доступное для всех участников, как для составителей, так и для учащихся, позволяющий помимо всего прочего его регулярно обновлять и улучшать, включая в исследовательскую деятельность различных субъектов образовательного процесса. Это, в свою очередь, влияет на его актуальность, востребованность и соответствие государственным стандартам [11].

Рассмотрев различные подходы к формированию исследовательских навыков у школьников, включая конструктивистский подход, проектное и проблемное обучение, STEM-технологии и сетевое взаимодействие следует сказать, что все эти методы значительно влияют на развитие исследовательского опыта учащихся, способствуя более глубокому усвоению учебного материала и подготовке к самостоятельной научной деятельности.

Для практикующих педагогов рекомендуется интегрировать различные подходы, сочетая конструктивистские элементы с проектным и проблемным обучением для создания комплексных учебных программ. Это поможет учащимся не только усваивать материал, но и активно участвовать в его применении и анализе. Разработка проектов на основе реальных задач позволит учащимся видеть значимость своих исследований и повысит мотивацию к обучению, что также способствует развитию навыков критического мышления и анализа.

Перспективы дальнейших исследований должны сосредоточиться на разработке интегрированных методик, объединяющих несколько подходов для максимизации вовлеченности учащихся в исследовательскую деятельность. Важно также провести исследования, направленные на изучение воздействия разных подходов на формирование исследовательских навыков, чтобы выявить наиболее эффективные практики и адаптировать их к требованиям современных образовательных стандартов. Следует изучить долгосрочные результаты применения этих методов в школьном обучении и их влияние на дальнейшую академическую и профессиональную деятельность выпускников, что поможет адаптировать образовательные программы к потребностям рынка труда.

Литература

- 1. Бабич Н. Конструктивизм: обучение и преподавание // Вестник Краснояр. гос. пед. ун-та им. В.П. Астафьева. 2013. № 3(25). С. 6–30.
- 2. Бикбулатов Р.Р., Иванов В.Г., Еремеева Г.Р. Использование конструктивистского подхода в развитии одаренности обучающихся // Казанский педагогический журнал. 2016. № 2-1(115). С. 50–54.
 - 3. Выготский Л.С. Мышление и речь. М.: Педагогика, 1934.
- 4. Гайнетдин Д.М., Явгильдина З.М., Ефимова Л.П. Инновационные методы в организации проектной деятельности школьников // Современные проблемы науки и образования. 2015. № 4. С. 196.
- 5. Голавская Н.И. Формирование у старших подростков субъектного исследовательского опыта во внеурочной деятельности: автореф. дис. . . . канд. пед. наук. Улан-Удэ, 2005.
- 6. Горбунова Н.В. Проектная деятельность и проектные методы в образовании // Проблемы современного педагогического образования. 2019. № 63-2. С. 112–116.
 - 7. Дьюи Дж. Демократия и образование / пер. с англ. М.: Педагогика-Пресс, 2000.
- 8. Евдокимова В.Е., Кириллова О.А. Сетевое взаимодействие как форма совместной деятельности образовательных учреждений // Вестник Шадрин. гос. пед. ун-та. 2021. № 4(52). С. 59–63.
- 9. Индивидуальные проекты. Физика. [Электронный ресурс]. URL: https://miroznai.ru/node/917 (дата обращения: 02.12.2024).
- 10. Кононенко О.С. Формирование опыта исследовательской деятельности старшеклассников в научных обществах учащихся по экологии: автореф. дис. ... канд. пед. наук. Кемерово, 2005.

- 11. Коротков А.М., Карпушова О.А., Спиридонова С.Б. Метод сетевого смешанного обучения и опыт его реализации в педагогическом вузе // Педагогика. 2024. Т. 88. № 9. С. 17–27.
- 12. Куликова Л.Г., Тырина М.П., Пардала А. Проблемное обучение как средство решения педагогических проблем // Проблемы современного педагогического образования. 2019. № 65-2. С. 180–184.
- 13. Ощепков А.А., Репин А.О. STEM-технология как средство развития творческой деятельности обучающихся // Проблемы современного педагогического образования. 2019. № 65-4. С. 246–249.
- 14. Павлова Л.В., Вторушина Ю.Л., Барышникова Ю.В. Реализация проблемного подхода в обучении иностранным языкам в парадигме новых ФГОС // Современные проблемы науки и образования. 2018. № 3. С. 80.
 - 15. Пиаже Ж. Психология интеллекта. М. [и др.]: Питер, 2004.
- 16. Пчела И.В., Разумная Н.В. Развитие исследовательских компетенций обучающихся в условиях сетевого взаимодействия образовательных организаций // Мир науки. Педагогика и психология. 2022. Т. 10. № 5.
- 17. Семенова Д.А. Особенности, опыт и преимущества внедрения STEAM-технологии в подготовку учащихся основной школы // Вестник Рос. ун-та дружбы народов. Сер.: Информатизация образования. 2022. Т.19. № 2. С. 146–156.
- 18. Суханова Е.А., Зобнина А.А. Образовательный потенциал межорганизационного сетевого взаимодействия (на материале взаимодействия организаций высшего и общего образования) // Педагогический ИМИДЖ. 2017. № 2(35). С. 77–85.